This code is from project: CC1101 Atmega32u USB dongle
cc1101_dongle.c
#include "cc1101_dongle.h" #include "usb_desc.h" #include <avr/io.h> #include <avr/wdt.h> #include <avr/power.h> #include <avr/interrupt.h> struct spi_reg { uint16_t reg; uint16_t val; }; uint8_t spi_write(uint8_t data) { L(TIMSK0, TOIE0); SPDR = data; while(!(SPSR & (1 << SPIF))); H(TIMSK0, TOIE0); return SPDR; } uint8_t spi_strobe(uint8_t s) { uint8_t r = 0; ENABLE; r = spi_write(s); DISABLE; return r; } void spi_reg_write(struct spi_reg *r) { ENABLE; spi_write(r->reg | WRITE_BURST); spi_write(r->val); DISABLE; } void spi_reg_read(struct spi_reg *r) { ENABLE; spi_write(r->reg | READ_BURST); r->val = spi_write(0); DISABLE; } uint8_t spi_reg_read_single(uint8_t a) { uint8_t r = 0; ENABLE; spi_write(a | READ_BURST); r = spi_write(0); DISABLE; return r; } USB_ClassInfo_CDC_Device_t serial = { .Config = { .ControlInterfaceNumber = INTERFACE_ID_CDC_CCI, .DataINEndpoint = { .Address = CDC_TX_EPADDR, .Size = CDC_TXRX_EPSIZE, .Banks = 1, }, .DataOUTEndpoint = { .Address = CDC_RX_EPADDR, .Size = CDC_TXRX_EPSIZE, .Banks = 1, }, .NotificationEndpoint = { .Address = CDC_NOTIFICATION_EPADDR, .Size = CDC_NOTIFICATION_EPSIZE, .Banks = 1, }, }, }; void EVENT_USB_Device_Connect(void) { } void EVENT_USB_Device_Disconnect(void) { } void EVENT_USB_Device_ConfigurationChanged(void) { CDC_Device_ConfigureEndpoints(&serial); } void EVENT_USB_Device_ControlRequest(void) { CDC_Device_ProcessControlRequest(&serial); } uint8_t usb_cfg = 0; void EVENT_CDC_Device_ControLineStateChanged(USB_ClassInfo_CDC_Device_t *const CDCInterfaceInfo) { L(EIMSK, INT2); usb_cfg = (CDCInterfaceInfo->State.ControlLineStates.HostToDevice & CDC_CONTROL_LINE_OUT_DTR) != 0; } void led_strobe() { static strobe = 0; if(strobe) { strobe = 0; LED_ON; } else { LED_OFF; strobe = 1; } } uint8_t packet_len = 0; uint8_t bytes_to_send = 0; uint8_t buff[255] = {}; uint8_t buff_idx = 0; uint8_t timer = 0; ISR(TIMER0_OVF_vect) { volatile uint8_t i = 0; CDC_Device_USBTask(&serial); USB_USBTask(); timer++; // blink led periodically if (timer > 40) { led_strobe(); timer = 0; } } // FIFO above threshold interrupt ISR(INT2_vect) { volatile uint8_t val = spi_reg_read_single(RXBYTES); volatile uint8_t i = 0; ENABLE; spi_write(READ_BURST | RXFIFO); for(i = 0; i < (val & 0x7F); i++) { buff[buff_idx++] = spi_write(0); } DISABLE; // this is only good for small data rates, // probably ring buffer would be better here if (buff_idx == packet_len) { for(i = 0; i < buff_idx; i++) { CDC_Device_SendByte(&serial, buff[i]); } buff_idx = 0; } CDC_Device_USBTask(&serial); USB_USBTask(); } /****************************************************************************/ /* */ /****************************************************************************/ int main() { H(DDRE, PE6); // led L(DDRD, PD2); // GDO2 L(DDRD, PD3); // GDO0 H(PORTD, PD2); H(PORTD, PD3); H(DDRB, PB0); // SS H(DDRB, PB1); // SCK H(DDRB, PB2); // MOSI L(DDRB, PB3); // MISO DISABLE; H(SPSR, SPI2X); H(SPCR, MSTR); H(SPCR, SPE); MCUSR &= ~(1 << WDRF); wdt_disable(); clock_prescale_set(clock_div_1); USB_Init(); H(TCCR0B, CS00); H(TCCR0B, CS02); H(TIMSK0, TOIE0); H(EICRA, ISC20); H(EICRA, ISC21); L(EIMSK, INT2); GlobalInterruptEnable(); // reset CC1101 DISABLE; _delay_us(50); ENABLE; spi_strobe(SRES); _delay_us(200); spi_strobe(SIDLE); spi_strobe(SFRX); spi_strobe(SFTX); int16_t c = 0; struct spi_reg r; uint8_t r_idx = 0; while(1) { c = CDC_Device_ReceiveByte(&serial); if (c < 0) continue; // if we have seen DTR before, push config into cc1101 if (usb_cfg > 0) { if (usb_cfg == 1) { // first stage is to flush buffs and change cc1101 state // to idle usb_cfg = 2; spi_strobe(SIDLE); while(spi_reg_read_single(MARCSTATE) != MARCSTATE_IDLE); spi_strobe(SFRX); spi_strobe(SFTX); buff_idx = 0; } // if we hit end of config 0xFF, back to normal operation, enable // fifo interrupt if (c == 0xff && r_idx == 0) { usb_cfg = 0; spi_strobe(SRX); while(spi_reg_read_single(MARCSTATE) != MARCSTATE_RX); H(EIMSK, INT2); continue; } if (r_idx == 0) { r.reg = c; r_idx++; } else { r.val = c; r_idx = 0; // in this special case, copy PKTLEN to variable if (r.reg == PKTLEN) { packet_len = r.val; bytes_to_send = packet_len; } spi_reg_write(&r); } } else { // we've got some data, push it to TX fifo, then // push over air ENABLE; spi_write(TXFIFO); spi_write(c); DISABLE; bytes_to_send--; if(bit_is_set(PIND, PD3) && bytes_to_send > 0) { spi_strobe(STX); while(spi_reg_read_single(MARCSTATE) != MARCSTATE_TXFIFO_UNDERFLOW); spi_strobe(SFTX); } if (!bytes_to_send) { spi_strobe(STX); if (packet_len <= 64) while(spi_reg_read_single(MARCSTATE) != MARCSTATE_IDLE); else while(spi_reg_read_single(MARCSTATE) != MARCSTATE_TXFIFO_UNDERFLOW); if (packet_len <= 64) while(spi_reg_read_single(MARCSTATE) != MARCSTATE_IDLE); spi_strobe(SFTX); bytes_to_send = packet_len; spi_strobe(SRX); while(spi_reg_read_single(MARCSTATE) != MARCSTATE_RX); } } } }
cc1101_dongle.h
#ifndef _H_CC1101_DONGLE_H_ #define _H_CC1101_DONGLE_H_ #define H(a,b) a |=(1<<(b)) #define L(a,b) a &=~(1<<(b)) #define IS(a,b) bit_is_set(a,b) #define BS(a,b) (a & (1<<(b))) #define ENABLE L(PORTB, PB0) #define DISABLE H(PORTB, PB0) #define LED_ON H(PORTE, PE6) #define LED_OFF L(PORTE, PE6) // some of CC1101 registers and states #define TXFIFO 0x3F #define RXFIFO 0x3F #define STX 0x35 #define SRX 0x34 #define SFTX 0x3B #define SFRX 0x3A #define READ_BURST 0xC0 #define WRITE_BURST 0x40 #define RXBYTES 0x3B #define TXBYTES 0x3A #define PKTLEN 0x06 #define MARCSTATE 0x35 #define SIDLE 0x36 #define SRES 0x30 #define MARCSTATE_IDLE 0x01 #define MARCSTATE_RX 0x0D #define MARCSTATE_TXFIFO_UNDERFLOW 0x16 #endif #ifndef F_CPU #error CPU speed unknown #endif
usb_desc.c
#include "usb_desc.h" /** Device descriptor structure. This descriptor, located in FLASH memory, describes the overall * device characteristics, including the supported USB version, control endpoint size and the * number of device configurations. The descriptor is read out by the USB host when the enumeration * process begins. */ const USB_Descriptor_Device_t PROGMEM DeviceDescriptor = { .Header = {.Size = sizeof(USB_Descriptor_Device_t), .Type = DTYPE_Device}, .USBSpecification = VERSION_BCD(1,1,0), .Class = CDC_CSCP_CDCClass, .SubClass = CDC_CSCP_NoSpecificSubclass, .Protocol = CDC_CSCP_NoSpecificProtocol, .Endpoint0Size = FIXED_CONTROL_ENDPOINT_SIZE, .VendorID = 0x03EB, .ProductID = 0x2044, .ReleaseNumber = VERSION_BCD(0,0,1), .ManufacturerStrIndex = STRING_ID_Manufacturer, .ProductStrIndex = STRING_ID_Product, .SerialNumStrIndex = USE_INTERNAL_SERIAL, .NumberOfConfigurations = FIXED_NUM_CONFIGURATIONS }; /** Configuration descriptor structure. This descriptor, located in FLASH memory, describes the usage * of the device in one of its supported configurations, including information about any device interfaces * and endpoints. The descriptor is read out by the USB host during the enumeration process when selecting * a configuration so that the host may correctly communicate with the USB device. */ const USB_Descriptor_Configuration_t PROGMEM ConfigurationDescriptor = { .Config = { .Header = {.Size = sizeof(USB_Descriptor_Configuration_Header_t), .Type = DTYPE_Configuration}, .TotalConfigurationSize = sizeof(USB_Descriptor_Configuration_t), .TotalInterfaces = 2, .ConfigurationNumber = 1, .ConfigurationStrIndex = NO_DESCRIPTOR, .ConfigAttributes = (USB_CONFIG_ATTR_RESERVED | USB_CONFIG_ATTR_SELFPOWERED), .MaxPowerConsumption = USB_CONFIG_POWER_MA(100) }, .CDC_CCI_Interface = { .Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface}, .InterfaceNumber = INTERFACE_ID_CDC_CCI, .AlternateSetting = 0, .TotalEndpoints = 1, .Class = CDC_CSCP_CDCClass, .SubClass = CDC_CSCP_ACMSubclass, .Protocol = CDC_CSCP_ATCommandProtocol, .InterfaceStrIndex = NO_DESCRIPTOR }, .CDC_Functional_Header = { .Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalHeader_t), .Type = DTYPE_CSInterface}, .Subtype = CDC_DSUBTYPE_CSInterface_Header, .CDCSpecification = VERSION_BCD(1,1,0), }, .CDC_Functional_ACM = { .Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalACM_t), .Type = DTYPE_CSInterface}, .Subtype = CDC_DSUBTYPE_CSInterface_ACM, .Capabilities = 0x06, }, .CDC_Functional_Union = { .Header = {.Size = sizeof(USB_CDC_Descriptor_FunctionalUnion_t), .Type = DTYPE_CSInterface}, .Subtype = CDC_DSUBTYPE_CSInterface_Union, .MasterInterfaceNumber = INTERFACE_ID_CDC_CCI, .SlaveInterfaceNumber = INTERFACE_ID_CDC_DCI, }, .CDC_NotificationEndpoint = { .Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint}, .EndpointAddress = CDC_NOTIFICATION_EPADDR, .Attributes = (EP_TYPE_INTERRUPT | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA), .EndpointSize = CDC_NOTIFICATION_EPSIZE, .PollingIntervalMS = 0xFF }, .CDC_DCI_Interface = { .Header = {.Size = sizeof(USB_Descriptor_Interface_t), .Type = DTYPE_Interface}, .InterfaceNumber = INTERFACE_ID_CDC_DCI, .AlternateSetting = 0, .TotalEndpoints = 2, .Class = CDC_CSCP_CDCDataClass, .SubClass = CDC_CSCP_NoDataSubclass, .Protocol = CDC_CSCP_NoDataProtocol, .InterfaceStrIndex = NO_DESCRIPTOR }, .CDC_DataOutEndpoint = { .Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint}, .EndpointAddress = CDC_RX_EPADDR, .Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA), .EndpointSize = CDC_TXRX_EPSIZE, .PollingIntervalMS = 0x05 }, .CDC_DataInEndpoint = { .Header = {.Size = sizeof(USB_Descriptor_Endpoint_t), .Type = DTYPE_Endpoint}, .EndpointAddress = CDC_TX_EPADDR, .Attributes = (EP_TYPE_BULK | ENDPOINT_ATTR_NO_SYNC | ENDPOINT_USAGE_DATA), .EndpointSize = CDC_TXRX_EPSIZE, .PollingIntervalMS = 0x05 } }; /** Language descriptor structure. This descriptor, located in FLASH memory, is returned when the host requests * the string descriptor with index 0 (the first index). It is actually an array of 16-bit integers, which indicate * via the language ID table available at USB.org what languages the device supports for its string descriptors. */ const USB_Descriptor_String_t PROGMEM LanguageString = USB_STRING_DESCRIPTOR_ARRAY(LANGUAGE_ID_ENG); /** Manufacturer descriptor string. This is a Unicode string containing the manufacturer's details in human readable * form, and is read out upon request by the host when the appropriate string ID is requested, listed in the Device * Descriptor. */ const USB_Descriptor_String_t PROGMEM ManufacturerString = USB_STRING_DESCRIPTOR(L"cc1101_test"); /** Product descriptor string. This is a Unicode string containing the product's details in human readable form, * and is read out upon request by the host when the appropriate string ID is requested, listed in the Device * Descriptor. */ const USB_Descriptor_String_t PROGMEM ProductString = USB_STRING_DESCRIPTOR(L"cc1101_test"); /** This function is called by the library when in device mode, and must be overridden (see library "USB Descriptors" * documentation) by the application code so that the address and size of a requested descriptor can be given * to the USB library. When the device receives a Get Descriptor request on the control endpoint, this function * is called so that the descriptor details can be passed back and the appropriate descriptor sent back to the * USB host. */ uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, const void** const DescriptorAddress) { const uint8_t DescriptorType = (wValue >> 8); const uint8_t DescriptorNumber = (wValue & 0xFF); const void* Address = NULL; uint16_t Size = NO_DESCRIPTOR; switch (DescriptorType) { case DTYPE_Device: Address = &DeviceDescriptor; Size = sizeof(USB_Descriptor_Device_t); break; case DTYPE_Configuration: Address = &ConfigurationDescriptor; Size = sizeof(USB_Descriptor_Configuration_t); break; case DTYPE_String: switch (DescriptorNumber) { case STRING_ID_Language: Address = &LanguageString; Size = pgm_read_byte(&LanguageString.Header.Size); break; case STRING_ID_Manufacturer: Address = &ManufacturerString; Size = pgm_read_byte(&ManufacturerString.Header.Size); break; case STRING_ID_Product: Address = &ProductString; Size = pgm_read_byte(&ProductString.Header.Size); break; } break; } *DescriptorAddress = Address; return Size; }
usb_desc.h
#ifndef _USB_DESC_H_ #define _USB_DESC_H_ #include "cc1101_dongle.h" #include "../../LUFA/Drivers/USB/USB.h" /* Macros: */ /** Endpoint address of the CDC device-to-host notification IN endpoint. */ #define CDC_NOTIFICATION_EPADDR (ENDPOINT_DIR_IN | 2) /** Endpoint address of the CDC device-to-host data IN endpoint. */ #define CDC_TX_EPADDR (ENDPOINT_DIR_IN | 3) /** Endpoint address of the CDC host-to-device data OUT endpoint. */ #define CDC_RX_EPADDR (ENDPOINT_DIR_OUT | 4) /** Size in bytes of the CDC device-to-host notification IN endpoint. */ #define CDC_NOTIFICATION_EPSIZE 8 /** Size in bytes of the CDC data IN and OUT endpoints. */ #define CDC_TXRX_EPSIZE 16 /* Type Defines: */ /** Type define for the device configuration descriptor structure. This must be defined in the * application code, as the configuration descriptor contains several sub-descriptors which * vary between devices, and which describe the device's usage to the host. */ typedef struct { USB_Descriptor_Configuration_Header_t Config; // CDC Control Interface USB_Descriptor_Interface_t CDC_CCI_Interface; USB_CDC_Descriptor_FunctionalHeader_t CDC_Functional_Header; USB_CDC_Descriptor_FunctionalACM_t CDC_Functional_ACM; USB_CDC_Descriptor_FunctionalUnion_t CDC_Functional_Union; USB_Descriptor_Endpoint_t CDC_NotificationEndpoint; // CDC Data Interface USB_Descriptor_Interface_t CDC_DCI_Interface; USB_Descriptor_Endpoint_t CDC_DataOutEndpoint; USB_Descriptor_Endpoint_t CDC_DataInEndpoint; } USB_Descriptor_Configuration_t; /** Enum for the device interface descriptor IDs within the device. Each interface descriptor * should have a unique ID index associated with it, which can be used to refer to the * interface from other descriptors. */ enum InterfaceDescriptors_t { INTERFACE_ID_CDC_CCI = 0, /**< CDC CCI interface descriptor ID */ INTERFACE_ID_CDC_DCI = 1, /**< CDC DCI interface descriptor ID */ }; /** Enum for the device string descriptor IDs within the device. Each string descriptor should * have a unique ID index associated with it, which can be used to refer to the string from * other descriptors. */ enum StringDescriptors_t { STRING_ID_Language = 0, /**< Supported Languages string descriptor ID (must be zero) */ STRING_ID_Manufacturer = 1, /**< Manufacturer string ID */ STRING_ID_Product = 2, /**< Product string ID */ }; uint16_t CALLBACK_USB_GetDescriptor(const uint16_t wValue, const uint8_t wIndex, const void** const DescriptorAddress) ATTR_WARN_UNUSED_RESULT ATTR_NON_NULL_PTR_ARG(3); #endif
makefile
# # LUFA Library # Copyright (C) Dean Camera, 2013. # # dean [at] fourwalledcubicle [dot] com # www.lufa-lib.org # # -------------------------------------- # LUFA Project Makefile. # -------------------------------------- # Run "make help" for target help. MCU = atmega32u4 ARCH = AVR8 BOARD = CC1101_TEST F_CPU = 8000000 F_USB = $(F_CPU) OPTIMIZATION = s TARGET = cc1101_dongle SRC = $(TARGET).c usb_desc.c $(LUFA_SRC_USB) $(LUFA_SRC_USBCLASS) LUFA_PATH = ../../LUFA CC_FLAGS = -DUSE_LUFA_CONFIG_HEADER -IConfig PROG=dfu-programmer PROG_FLAGS=$(MCU) # Default target all: upload: $(MAKE) all $(MAKE) $(HEX_FILE) $(PROG) $(PROG_FLAGS) erase $(PROG) $(PROG_FLAGS) flash $(TARGET).hex $(PROG) $(PROG_FLAGS) start # Include LUFA build script makefiles include $(LUFA_PATH)/Build/lufa_core.mk include $(LUFA_PATH)/Build/lufa_sources.mk include $(LUFA_PATH)/Build/lufa_build.mk include $(LUFA_PATH)/Build/lufa_cppcheck.mk include $(LUFA_PATH)/Build/lufa_doxygen.mk include $(LUFA_PATH)/Build/lufa_dfu.mk include $(LUFA_PATH)/Build/lufa_hid.mk include $(LUFA_PATH)/Build/lufa_avrdude.mk include $(LUFA_PATH)/Build/lufa_atprogram.mk
Function with arduino?
ReplyDeleteIt should work with arudino leonardo, because of same microcontroller. For other arduinos without USB, you should slightly rewrite rxtx <-> PC code to use hardware USART instead of virtual one like it does now. Nowadays there should be available some cc1101 library for arduino, so maybe do some little research on github.
Delete